Journal Articles
Permanent URI for this collectionhttps://dspace.univ-soukahras.dz/handle/123456789/25
Browse
3 results
Search Results
Item Unsupervised Deep Learning: Taxonomy and Algorithms(Slovene Society Informatika, 2022) Aida Chefrour; Labiba Souici-MeslatiClustering is a fundamental challenge in many data-driven application fields and machine learning techniques. The data distribution determines the quality of the outcomes, which has a significant impact on clustering performance. As a result, deep neural networks can be used to learn more accurate data representations for clustering. Many recent studies have focused on employing deep neural networks to develop a clustering-friendly representation, which has resulted in a significant improvement in clustering performance. We present a systematic survey of clustering with deep learning in this study. Then, a taxonomy of deep clustering is proposed, as well as some sample algorithms for our overview. Finally, we discuss some exciting future possibilities for clustering using deep learning and offer some remarksItem A Novel Incremental Learning Algorithm Based on Incremental Vector Support Machina and Incremental Neural Network Learn++(Lavoisier, 2019) Aida Chefrour; Labiba Souici-Meslati; Iness Difi; Nesrine BakkoucheIncremental learning refers to the learning of new information iteratively without having to fully retain the classifier. However, a single classifier cannot realize incremental learning if the classification problem is too complex and scalable. To solve the problem, this paper combines the incremental support vector machine (ISVM) and the incremental neural network Learn++ into a novel incremental learning algorithm called the ISVM-Learn++. The two incremental classifiers were merged by parallel combination and weighted sum combination. The proposed algorithm was tested on three datasets, namely, three databases Ionosphere, Haberman's Survival, and Blood Transfusion Service Center. The results show that the ISVM Learn ++ achieved a learning rate of 98 %, better than that of traditional incremental learning algorithms. The research findings shed new light on incremental supervised machine learning.Item AMF-IDBSCAN: Incremental Density Based Clustering Algorithm using Adaptive Median Filtering Technique(Slovene Society Informatika, 2019) Aida Chefrour; Labiba Souici-MeslatiDensity-based spatial clustering of applications with noise (DBSCAN) is a fundamental algorithm for density-based clustering. It can discover clusters of arbitrary shapes and sizes from a large amount of data, which contains noise and outliers. However, it fails to treat large datasets, outperform when new objects are inserted into the existing database, remove noise points or outliers totally and handle the local density variation that exists within the cluster. So, a good clustering method should allow a significant density modification within the cluster and should learn dynamics and large databases. In this paper, an enhancement of the DBSCAN algorithm is proposed based on incremental clustering called AMF-IDBSCAN which builds incrementally the clusters of different shapes and sizes in large datasets and eliminates the presence of noise and outliers. The proposed AMF-IDBSCAN algorithm uses a canopy clustering algorithm for pre-clustering the data sets to decrease the volume of data, applies an incremental DBSCAN for clustering the data points and Adaptive Median Filtering (AMF) technique for post-clustering to reduce the number of outliers by replacing noises by chosen medians. Experiments with AMF-IDBSCAN are performed on the University of California Irvine (UCI) repository UCI data sets. The results show that our algorithm performs better than DBSCAN, IDBSCAN, and DMDBSCAN.