Journal Articles
Permanent URI for this collectionhttps://dspace.univ-soukahras.dz/handle/123456789/229
Browse
3 results
Search Results
Item Experimental study of the static behaviour of the PEM fuel cell(IPCO, 2017) Nedjem Eddine Benchouia; Bouziane MahmahThis work proposes and justifies an easy electric model of a power generation system based on a PEM fuel cell, the H-Tec PEM Power Module of 1.2W. This model has been developed by means of experimental data obtained in our laboratory.Item An adaptive fuzzy logic controller (AFLC) for PEMFC fuel cell(www.elsevier.com/locate/he, 2015) Nedjem-Eddine Benchouia; Abdallah Derghal; Bouziane Mahmah; Belgacem Madi; Lakhdar Khochemane; Elias Hadjadj AoulAmong the various fuel cell technologies available for use in vehicular systems, the Proton Exchange Membrane Fuel Cell (PEMFC) has drawn the most attention due to its simplicity, viability, higher power density, and operation at lower temperatures. Due to these features, PEMFC is considered to be the most suitable technology for vehicular systems, industry, and other applications. As fuel cells are likely to be used in many future applications, great efforts have recently been made for their comprehension and design. This paper focuses on a 1.2WPEM fuel cell unit and develops the models of stack voltage and stack power. While the PEM fuel cell is a nonlinear process, it is very suitable to use fuzzy control to solve the control issue of the fuel cell. The stack output power can be controlled to a given value by using a variable universe fuzzy controller by controlling the input gas flow rate. In this paper, an FLC controller has been designed to control the voltage in the presence of fluctuations. The results of the implementation of this designed FLC controller on a dynamic electrochemical model of a small size 1.2 W, PEM fuel cell have been simulated by MATLAB Simulink and compared with a traditional PID controller. Simulation results show that good control effects can be achieved by using the adaptive fuzzy control system.Item Bond graph modeling approach development for fuel cell PEMFC systems(www.elsevier.com/locate/he, 2014-09-14) Nedjem Eddine Benchouia; Elias Hadjadj Aoul; Lakhdar Khochemane; Bouziane MahmahThis paper addresses the problem of bond graph methodology as a graphical approach for modeling fuel cell systems. The system consists of a Proton Exchange Membrane Fuel Cell (PEMFC) stack, an interleaved boost converter, battery pack connected via a buck converter. Simulation results illustrate the simplified system response obtained using implementation of the governing equations in MATLAB/Simulink and is compared with a bond graph implementation in the simulation program 20-sim.