Faculty of Science and Technology
Permanent URI for this communityhttps://dspace.univ-soukahras.dz/handle/123456789/13
Welcome to Faculty of Science and Technology
Browse
2 results
Search Results
Item Carbon Nanotube Catalytic Deposition Synthesis(IEEE Journal, 2007) O. Guellati, A. Fonseca, W. Bounour, M. Guerioune, Z. Mekhalif, Joseph Delhalle, A. Benaldjia and Jànos B. NagyCarbon nanotubes "CNTs" have been the focus of numerous investigations because of their unique and superior properties that are a consequence of their particular structure. Their synthesis has been receiving much attention for a wide variety of applications. Though, scientists are researching more economic ways to produce these structures with high quality and purity, our aim in this research is to investigate and optimize the results of the CNTs growth process using CCVD technique. Due to its simplicity and low cost, this technique is perfectly suited for the production of nanomaterials for future industrial applications. MWNTs CCVD synthesis was carried out at 700degC in 5 to 120 minutes reaction. It is essentially based on 2 steps process: a catalyst impregnation preparation step followed by CCVD procedure using ethylene decomposition over Fe-Co/MgO support. During this synthesis, impurities were also produced. Thus, subsequent chemical purification steps were required to separate the tubes. Finally, characterization of crude and purified products was performed by TEM, SEM and FESEM focusing on composition, form and purity obtained.Item Reliability Analysis of Low Alloy Ferritic Piping Materials(Springer, Dordrecht, 2009) A. Guedri; B. Merzoug; Moe Khaleel; A. ZeghloulThe aim of this study is to improving microstructure and mechanical properties of the weldable gas pipeline steel using laboratory mill. To achieve the required microstructure and mechanical properties of thermo mechanically processed HSLA steels, it is necessary to have an idea about the role of composition and process parameters. The large numbers of parameters obtained during the production process in the plant were systematically changed to optimize the strength and toughness properties. The optimized parameters were used for the production of the API X60/X70 steel. However, the controlled cooling after rolling should result in transformed products that provide excellent combination of strength and toughness. The coiling at an appropriate temperature have the advantage of the precipitation strengthening, giving further rise to the high yield strength and also improvement in toughness of the steel. The coiling temperature is a decisive parameter because it determines the beginning of the formation of fine precipitations. Therefore, four different laboratory cooling systems were used, in this study to simulate the rolling conditions of a real industrial Thermomechanically controlled process, as close as possible and to check the possibilities of improving the mechanical properties of the welded pipeline steel.